Jump-diffusion processes in random environments
نویسندگان
چکیده
منابع مشابه
Quenched large deviations for multiscale diffusion processes in random environments*
We consider multiple time scales systems of stochastic differential equations with small noise in random environments. We prove a quenched large deviations principle with explicit characterization of the action functional. The random medium is assumed to be stationary and ergodic. In the course of the proof we also prove related quenched ergodic theorems for controlled diffusion processes in ra...
متن کاملApproximating GARCH-Jump Models, Jump-Diffusion Processes, and Option Pricing
This paper considers the pricing of options when there are jumps in the pricing kernel and correlated jumps in asset prices and volatilities. We extend theory developed by Nelson (1990) and Duan (1997) by considering limiting models for our resulting approximating GARCH-Jump process. Limiting cases of our processes consist of models where both asset price and local volatility follow jump diffus...
متن کاملJump locations of jump-diffusion processes with state-dependent rates
We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’....
متن کاملDetecting Jumps from Lévy Jump Diffusion Processes
Recent asset-pricing models incorporate jump risk through Lévy processes in addition to diffusive risk. This paper studies how to detect stochastic arrivals of small and big Lévy jumps with new nonparametric tests. The tests allow for robust analysis of their separate characteristics and facilitate better estimation of return dynamics. Empirical evidence of both small and big jumps based on the...
متن کاملStability Properties of Constrained Jump - Diffusion Processes
We consider a class of jump-diffusion processes, constrained to a polyhedral cone G ⊂ IRn, where the constraint vector field is constant on each face of the boundary. The constraining mechanism corrects for “attempts” of the process to jump outside the domain. Under Lipschitz continuity of the Skorohod map Γ, it is known that there is a cone C such that the image Γφ of a deterministic linear tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2014
ISSN: 0022-0396
DOI: 10.1016/j.jde.2014.05.052